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Abstract. We consider generalized scaling exponents for the graph of a scalar function to allow
for multiscaling of the graph length. These generalized exponents are related to the moments of
the distribution of roughness over the support of the graph. We report numerical computations
of these exponents for the graphs of Coupled Map Lattices exhibiting phase transitions between
laminar and turbulent behaviour. We observe multiscaling of the graph in the transition region.
Furthermore, the generalized-dimensionsD(q) are computed for a conserved measure of graph
roughness.

1. Introduction

Graphs of non-analytic scalar functions exhibiting wrinkling on many scales are encountered
in many contexts, notably in turbulence. It has been experimentally observed (Sreenivasan,
1991) and theoretically argued (Constantin and Procaccia 1992, Procaccia and Constantin
1993, Constantin and Procaccia 1993) that the vorticity field, or such passive scalars as the
concentration of a pollutant, or the temperature, exhibit fractal graphs between some lower
cut-off length provided by the dissipation mechanism (say diffusion) present in the system
and some typical length scaleL over which the maximum variations in the value of the
function are encountered. The graph is self affine; extending the domain to many times the
scaleL yields necessarily a flat surface at large scales.

The degree of roughness of the graph need not be uniformly distributed (figure 1). In
particular, a properly defined capacity-dimension could be smaller than the dimension of
the support (Constantin and Procaccia 1992), paving the way for the anomalous scaling
of the structure functions and of the fields related to the derivatives of the graph under
consideration.

In this paper we would like to investigate whether multiscaling of the graph length
can be observed in Coupled Map Lattices (Kaneko 1985). Coupled Map Lattices can be
thought of as modelling dynamical systems described by differential equations (Keeler and
Farmer 1986). They are capable of exhibiting phase transitions between ‘turbulent’ and
‘laminar’ behaviour (Chat́e and Manneville 1988, Houlriket al 1990) and spatio-temporal
intermittency along the phase boundary (Hüner and Erzan 1994).

The paper is organized as follows. In section 2 we recall the definition of the graph
dimension and discuss how to compute it for a function defined over a discrete lattice. In
section 3 we define scaling exponents for theqth moments of the graph length, averaged over
time and space, and find numerically that for Coupled Map Lattices undergoing dynamical
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Figure 1. Graph of the coupled modified tent map, equation (18), for two different chains of
length 3100 and 500, showing the self-similar, inhomogeneous distribution of the roughness.
ν = 3, ε = 0.3598.

phase transitions, these can depend nontrivially onq. We then evoke the generalized
dimensionsD(q) (Grassberger and Procaccia 1984, Hentschel and Procaccia 1983) to
describe the distribution of the graph roughness.

2. Scaling of the graph length

After Constantin and Procaccia (1993) we consider the graphG of a scalar functionx(r),
defined on a one-dimensional domainB of sizeR,

G(r) = (r, x(r)) r ∈ B (1)

with a characteristic scaleL << R over which the largest variations inx(r) of size ξ ,
are registered. We assume that the functionx(r) is bounded and continuous. The graph
length (Falconer 1985) over a region of sizeL may then approximated to better and better
accuracy by taking the finite differences|x(r + `) − x(r)|, with ` successively smaller, and
forming the sums,

I (`, L) =
L/∑̀
k=1

1k(`, L) (2)

where

1k(`, L) =
√

`2 +
(

L

ξ

)2

(x(rk + `) − x(rk))2 (3)

with rk = (k − 1)`. The factor of(L/ξ) gives1 the dimension of length,ξ is the absolute
value of the maximum variation ofx(r) taken over the domain of sizeL.
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In many applications in which one is interested, the graph may be smooth below some
cut-off lengthρ0, or, as in the case we will consider below, the functionx(r) may only
be defined over a discrete lattice with spacing which can be taken to be equal toρ0. We
will then consider the graph to consist of the piecewise linear set of points obtained by
connecting the valuesxk = x(kρ0) lying above the vertices of the lattice. Then, for` = ρ0,
|x(rk + ρ0) − x(rk)| 6 (constant)ρ0 by definition. On the other hand, as` becomes of the
same order asL, |x(rk + `) − x(rk)| 6 ξ( `

L
). For ` > L, the graph length will no longer

depend oǹ . However, consider the possibility that for some intermediate range of scales
ρ0 < ` < L, the finite difference in equation (3) scales like

|x(rk + `) − x(rk)| 6 ξ

(
`

L

)2−s

(4)

with 1 6 s < 2 (Falconer 1985). We see that we then have to distinguish between two
cases. In equation (3) we can pull out a factor of` outside the radical. Then, fors = 1,
the expression inside the radical does not depend on` any more and

1(`, L) ∼ ` s = 1. (5)

Correspondingly, the graph length given by the sum in equation (3) simply grows withL

for s = 1. However, fors > 1 one gets from equation (4),

1(`, L) 6 `

√
1 +

(
L

`

)2 (
`

L

)2(2−s)

(6)

so that as(`/L) gets progressively smaller than one, the second term inside the radical
becomes larger and larger, and dominates the first. For fixedL,

1(`, L) 6 `

(
`

L

)(1−s)

1 < s < 2 (7)

and there is a correction to naive scaling of the graph length. In this case,I (`, L) depends
on ` and grows faster than linearly withL. In summary, from (2) and (7) one obtains,

I (`, L) =


∼ L s = 1

6 L

(
L

`

)(s−1)

= `

(
L

`

)s

1 < s < 2.
(8)

Let us define the scaling exponentβ by

I (`, L) ∼ `1−βLβ (9)

for ρ0, ` < L; so that if one measures the graph length with sticks of size` and of size
`/b, one will find I (`/b, L)/I (`, L) ∼ bβ−1. We see thatβ = 1 for s = 1 andβ 6 s for
1 < s < 2.

For the range of length scales over which it is well defined, the scaling exponentβ can
be related to the box counting-dimension of the graph, as defined by Falconer (1985) and
by Procaccia and Constantin (1993) (also see Constantin and Procaccia 1993).

For a given set of linear sizeL, the box counting-dimensionD is commonly defined
via the scaling relation

N(`, L) ∼
(

L

`

)D

` → 0 (10)

whereN(`, L) is the number of boxes of sizèneeded to cover this set. Although, in many
applications, as in our case,` is bounded away from zero by a lower cut-offρ0, one speaks
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of a self-similarity or box counting-dimensionD in some finite scaling regionρ0 < ` < L

whereN(`/L) obeys such a power law as in (10). In this sense, one may estimate the
box counting-dimension of the graph within a (one-dimensional) region of sizeL, from the
number of boxes of sizè, ρ0 < ` < L, needed to cover the graph.

The number of sub-intervals of sizèneeded to cover the region of sizeL is
(

L
`

)
,

namely the number of terms in the sum in equation (2). The number of boxes of size`

needed to cover the piece of the graph lying above an`-sized sub-interval can be estimated
by dividing 1k(`, L), the end-to end distance of the graph over thekth sub-interval, bỳ ,
i.e. Nk(`, L) 6 1k(`, L)/` + 1. The total number of boxes,N(`, L), needed to cover the
whole graph over the intervalL is then

N(`, L) =
L/∑̀
k

Nk(`, L) 6
∑

k

1k(`, L) + L/`. (11)

Now note that, by definition (equations (3) and (10)),

I (`, L) > `N(`, L) − L ∼ `1−DLD (12)

from which we inferβ > D by (9). If, moreover,1(`, L) obeys such bounds as in
equation (7), then one hass > β > D.

The scaling exponentβ exhibits all the right properties one expects of a dimension.
We see that (for a scalar graph defined over a one-dimensional domain) 16 β 6 2. For a
smooth graph, (s = 1), β = 1 and the length of the curve is simply proportional to the size
of the interval, while fors > 1, there is a correction to scaling such that the ‘length’ grows
faster with the size of the domain than linearly. Fors = 2, such thatx(r) does not depend
on r at all but is random, the graph can fill a strip, and the apparent-dimension for length
scalesρ0 < ` < L is 2.

Note that in this problem, there are in fact two different physical length scales in
question. The characteristic scaleL over which the largest variations inx are registered is,
in effect, a decorrelation length forx(r). The second length scale is the lower cut-offρ0

below which the graph becomes smooth. On the other hand, one may consider the scaling
properties of the graph either in terms of the sizeR of an arbitrary region over which the
graph is defined, or the size of the yardstick`, ρ0 < ` < R, in terms of which the graph
length is measured.

For R 6 L, ρ0 < ` < R, we may replaceL with R everywhere in equations (2)–(8),
so that we recover (9) with

I (`, L) ∼ `1−βRβ.

For regions of sizeR >> L, on the other hand, the graph length must again be simply
proportional to the size of the region. Thus, it is useful to define a crossover functionf (y)

such that the graph length as a function ofR goes like,∼ Rf (L/R), with

f (y) ∼
{

1 y � 1
yβ y � 1.

(13)

For y � 1, we may identifyR with `, in which case we will again recover equation (9).
For y � 1, the 1(`, L) do not depend onR, so that the sum in equation (2) is indeed
linearly proportional toR. If we assume that the scaling behaviour in all the differentL

intervals that fit into theR domain are the same, we find,

IL(`, R) ∼ R

L
`1−βLβ ∼ R

(
L

`

)β−1

(14)

in agreement with (13).
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In systems undergoing dynamical phase transitions, such as those modelled by Coupled
Map Lattices (Chat́e and Manneville 1988, Houlriket al 1990), we know that there are
large stretches over which the function of interest may be very smooth (‘laminar’ regions),
interrupted by (‘turbulent’) bursts of all sizes, over which the graph is extremely wrinkled.
The support of the ‘turbulent’ patches right at the transition point between completely
laminar and fully turbulent behaviour is a fractal (Hüner and Erzan 1994) up to length
scales comparable toL, the decorrelation length. Clearly one needs to define averaged
quantities over the whole domain. In fact, the graphs in which one is interested are also
functions of time and we would like scaling relations like equation (9) to be applicable to
time averaged quantities.

We have computed the scaling exponentβ for two different chains of diffusively coupled
nonlinear maps of the form (Kaneko 1985)

x
(n+1)
i = (1 − ε)g(x

(n)
i ) + ε

2
[g(x

(n)

i+1) + g(x
(n)

i−1)] (15)

where the superscripts indicate the time step and where the local nonlinear transformation
rule g specifies the particular model. Computations were performed on chains of length
480–3360.

2.1. Model A; the modified tent map

g(u) =


νu 0 6 u 6 1

2

ν(1 − u) 1
2 6 u 6 1

u u > 1

(16)

for ν > 2.
This single map has transient chaos for 0< u < 1/ν, 1−1/ν < u < 1. From within the

interval [1/ν, 1 − 1/ν] the trajectory is kicked to the interval [1, ν/2] where it sticks. The
coupled variablesxi have a nonzero chance to be re-injected into the ‘turbulent’ interval
(0, 1) once they are in the ‘laminar’ region [1, ν/2]. The dynamics of this chain can be
portrayed in an economical way by assigning a two-valued representation to thexi according
to whether they are in one or the other region (Chaté and Manneville 1988). There is a
phase boundary in theε, ν space, below which a finite fraction of the lattice points are in
the ‘turbulent’ state, whereas above the phase boundary, eventually all points fall into the
laminar region (Chaté and Manneville 1988, Houlriket al 1990, Grassberger and Schreiber
1991). Along the phase boundary, one finds that the ‘turbulent’ set of points is a fractal
(thus, the density of such points vanishes in the limit of an infinite chain), with a fractal
dimension which depends uponν and varying from 0.8 and 0.84. For chains of 512 sites.
the box covering-dimension is found to be well defined over length scales ranging from 2
to 256 sites (Ḧuner and Erzan 1994).

For the Coupled Map Lattices with the modified tent map we found that along the
‘turbulent’ to ‘laminar’ phase boundary, the graph length scaled with a well-defined exponent
for ` between 1–24 andβ was found to take values between 1.43 and 1.58 ± 0.04, for
different parameter values (see table 1). (L was determined by inspection to be∼ 144, in
order to maximize thè-interval over which the graph length scaled.)

2.2. Model B; the logistic map

g(u) = λu(1 − u) (17)
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Table 1. The scaling exponentβ(q) for the coupled modified tent map, for different parameter
values in the intermittent region. The linear least squares fits are made on the interval 16 ` 6 24,
and we report the chi-squared error estimates.

εc = 0.1 εc = 0.3598 εc = 0.7 εc = 0.9083
β(q) ν = 2.539 ν = 3 ν = 3.735 ν = 3

β(0) 1.35± 0.01 1.33± 0.01 1.31± 0.01 1.43± 0.03
β(1) 1.53± 0.02 1.53± 0.02 1.43± 0.02 1.58± 0.04
β(2) 1.62± 0.02 1.64± 0.02 1.51± 0.02 1.65± 0.04
β(3) 1.65± 0.02 1.69± 0.02 1.55± 0.02 1.68± 0.04
β(4) 1.66± 0.01 1.71± 0.02 1.57± 0.02 1.70± 0.04
β(5) 1.66± 0.01 1.72± 0.02 1.57± 0.02 1.71± 0.04

with 0 < λ < 4. Here we availed ourselves of a direct numerical computation ( ¸Cikci 1995)
of the largest Lyapunov exponent for the Coupled Map Lattices with fixedε = 0.5 as a
function of λ and considered values ofλ such that the system was in the chaotic regime,
with some points taken near periodic windows. In this case the decorrelation lengthL was
very small, of the order of at most four lattice spacings, and therefore no region was found
over whichβ was well defined.

3. Multiscaling of the graph length in Coupled Map Lattices

Consider now the graph over a domain of sizeR � L, which we break up into boxes of
size L. In computing the scaling exponentβ we have performed an average over these
boxes, also averaged over many time steps separated by intervals of the order of the size
of the system. Thus

〈〈I (`, L)〉〉 =
〈

1

NL

NL∑
i

Ii(`, L)

〉
∼ Lβ`1−β (18)

where the single set of brackets denote a time average, and the double set time and space
average,NL = R/L.

This overall scaling exponent does not tell us, however, how uniformly or unevenly
roughness is distributed over different boxes of sizeL covering the whole domain. We
can get an idea about this by formingqth moments ofI (`, L) and defining the scaling
exponentsβq via

〈〈I q(`, L)〉〉 =
〈

1

NL

NL∑
i

I
q

i (`, L)

〉
∼ Lq

(
L

`

)q(βq−1)

. (19)

For q=1, we simply recoverβ = β1; if the scaling behaviour ofIi(`, L) is uniform over all
the L boxes, one also hasβq = β for all q. However, for a non-uniform distribution, in
general we will have a nontrivial dependence onq. For largerq, thoseL boxes for which
the graph length is greater (largerβ) will have more weight in the sum (19); thusβq will
be a nondecreasing function ofq. The limit q → 0 yields,

β0 ln L + (1 − β0) ln ` = 〈〈ln I (`, L)〉〉.
Thus one finds,

β0 = 〈〈β〉〉.



Multiscaling of the graph length in Coupled Map Lattices 791

For q > 1, βq is a generalized scaling exponent which is like an effective graph-dimension
over those regions of the domainR with a higher and higher degree of roughness. For
model A, for parameter values such that one is in the laminar region,βq = 1 for all q.
In the turbulent region the scaling relation breaks down. Along the phase boundary we
obtain multiscaling behaviour for the graph length. The values found forβq , together with
the chi-squared errors, are reported in table 1, for the scaling region 16 ` 6 24. The
slopes have been computed from a least squres fit to the averaged value of theqth moments
(equation (19)), over 10 snapshots separated by 3000 timesteps. The chain length is 3360.
The true errors are about twice as large due to fluctuations in time. Note that, the error
bars cannot be reduced by taking longer chains, since the decorrelation lengthL does not
increase with chain length. Nevertheless, it can be seen that there is a systematic increase
in βq with q, with nontrivial dependence onq.

For model B, we cannot speak of well-defined scaling exponents.
We now turn to the question of how the roughness is distributed over the chain and

to this end avail ourselves of the generalized-dimensionsD(q) (Hentschel and Procaccia
1983, Halseyet al 1986). Consider forming the ratio,

µk(`, L) = 1k(`, L)

I (`, L)

with
∑L/`

k µk(`, L) = 1, and the partition function

χL(q; `) =
〈〈 L/∑̀

k

µ
q

k

〉〉
∼

(
`

L

)τ(q)

(20)

whereby we define the scaling exponentτ(q). The brackets again mean an average over
time and the positions of theL-balls. If this partition function indeed scales with`/L, for
ρ0 < ` < L, one may compute the generalized-dimensionsD(q) = τ(q)/(q −1). The limit
q → 1 gives the capacity-dimension

D(1) =
〈〈 ∑

k

µk ln µk

〉〉
/ ln(`/L). (21)

It can be seen from figure 2 and table 2 that such scaling is indeed observed for model A
(equations (15), (16)) along the phase boundary, within the scaling region 16 ` 6 24. The

Table 2. D(q) of the roughness measure, for the coupled modified tent map, for different
parameter values in the intermittent region. Chi-squared error estimates are given for the same
` interval as in table 1. The true errors are about twice as large due to fluctuations over time.

εc = .1 D(q) εc = 0.3598 εc = 0.7 εc = 0.9083
ν = 2.539 ν = 3 ν = 3.735 ν = 3

D(−5) 1.54± 0.01 1.55± 0.01 1.43± 0.02 1.54± 0.04
D(−4) 1.51± 0.01 1.51± 0.01 1.40± 0.01 1.50± 0.03
D(−3) 1.46± 0.01 1.46± 0.02 1.34± 0.01 1.44± 0.03
D(−2) 1.36± 0.01 1.36± 0.02 1.26± 0.01 1.35± 0.03
D(−1) 1.21± 0.01 1.21± 0.01 1.14± 0.01 1.21± 0.02
D(0) 1 1 1 1
D(1) 0.80± 0.01 0.83± 0.01 0.86± 0.005 0.82± 0.01
D(2) 0.60± 0.016 0.68± 0.01 0.72± 0.01 0.67± 0.01
D(3) 0.46± 0.01 0.54± 0.01 0.61± 0.01 0.57± 0.01
D(4) 0.39± 0.01 0.43± 0.01 0.52± 0.01 0.50± 0.02
D(5) 0.34± 0.01 0.35± 0.02 0.45± 0.01 0.45± 0.02
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Figure 2. (a) Multiscaling of the partition functionχL(q; `) for model A (ν = 3.0, ε = 0.3598).
HereL = 144, 16 ` 6 24, andq varies form−5 to 4 from the top to bottom. The lines are
best fits to the data points. The values ofD(q) are given in table 2. (b) Plot of the function
ln χL(q; `) q = −5, −4, . . . 4, over the whole range 16 ` 6 L, with a clear crossover behaviour
around` ∼ 24. The lines are a guide to the eye; see text.

D(q) decrease monotonically withq; D(0) = 1 as it should, since the graph is defined
over a one-dimensional chain. The capacity-dimension, (Farmeret al 1983) D(1) ranges
between 0.80 and 0.86 (± .01) over the phase boundary, in agreement with the values found
from numerical simulations for the fractal-dimension of the ‘turbulent’ set (Hüner and Erzan
1994). This indicates that the roughness indeed is indeed confined to the ‘turbulent’ points,
a set of smaller-dimension than the whole chain. This is due to the very pronounced laminar
stretches produced by the fixed line [1, ν/2] in the definition ofg(u) (equation (16)).
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In all of the above, we found that the quality of the fits to single snapshots were quite
good, but that the numbers tended to fluctuate somewhat in time. The fluctuations are once
more of the order of the reported error bars.

An inspection of figure 2(b), where we display lnχL(q; `) over the whole range
1 6 ` 6 L clearly shows a crossover behaviour around ln` ∼ 3. For q = 0, the plot is a
straight line over the whole range, with slope equal to−1, giving D(0) = 1 as expected.
The other straight line is forq = 1, since lnχL(1; `) ≡ 0 andD(1) has to be computed
separately from equation (21). For 24< ` the lines bend over, and one findsτ(q) = q − 1,
or D(q) = 1 for all q.

For the coupled logistic map, the dependence ofD(q) on q is much weaker; one finds
D(q) to be unity within the error bars.

We have considered the scaling behaviour of theqth moments of the graph length to
account for the non-uniform wrinkling of graphs. We have shown that this generalization
is meaningful by testing it on one-dimensional Coupled Map Lattices. We have found that
these systems are capable of exhibiting multiscaling in the region where they are intermittent;
in particular, the capacity dimension for the roughness is found to be less than the-dimension
of the substrate.
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